1. P. Fournier-Viger, C.W. Wu, S. Zida, V.S. Tseng.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning, Found. Intell. Syst., Springer, 83–92(2014)
2. Liang S., et al.: A Utility-based Recommendation Approach for Academic Literatures. ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 229-232 (2011).
3. Liu Y., et al..: A fast high utility itemsets mining algorithm. Proceedings of the 1st international workshop on Utility-based data mining, ACM, 90-99 (2005).
4. De Maio C., et al..: Rss-based elearning recommendations exploiting fuzzy for knowledge modeling. Appl. Soft Computing, 113–124 (2012).
5. Champiri Z D., et al.: A systematic review of scholar context-aware recommender systems.: Expert Systems with Applications, Elsevier, 1743–1758 (2015).
6. Koren Y., Bell R.: Advances in collaborative filtering. Recommender Systems Handbook, 77-11 8(2015).
7. de Gemmis, Marco, et al.: Semantics-Aware Content-Based Recommender Systems. Recommender Systems Handbook, 119-159 (2015).
8. ACL Anthology Network, http://clair.si.umich.edu/clair/anthology/.
9. Aggarwal, Charu C.: Ensemble-Based and Hybrid Recommender Systems. Recommender Systems. Springer International Publishing, 199-224 (2016).
10. Beel J., et al.: Research-paper recommender systems: a literature survey. International Journal on Digital Libraries, 1-34 (2015).
11. Boehmer J., Jung Y., and Wash R.: e-Commerce Recommender Systems. The International Encyclopedia of Digital Communication and Society (2015).