COMPARATIVE STUDIES OF BIFEO3 PREPARED BY CHEMICAL ROUTES
2
Author(s):
S. SHANKAR , MANISH KUMAR
Vol - 5, Issue- 4 ,
Page(s) : 111 - 121
(2014 )
DOI : https://doi.org/10.32804/CASIRJ
Abstract
Several methods have been used to prepare multiferroic BiFeO3 (BFO). Coprecipitation (Cppt), Autocombustion (AU) and Sol Gel (SG) routes are adopted to prepare BFO in this study and compare the multiferroic properties (structural, magnetic, electrical and dielectric at room temperature) of prepared samples. Splitting in the major peaks of powder X- ray diffraction patterns indicated the samples have rhombohedral structure with some commonly reported impurity phases as Bi2Fe4O9, which is an Fe-rich phase and less in case of sample prepared by AU route. Room temperature magnetic hysteresis loops indicate linear antiferromangetic behaviour of BFO. Although unsaturated ferroelectric hysteresis loops were observed in all the samples of BFO and due to which, we get high loss and low dielectric constant of the samples, cause of higher leakage current but the loss is comparatively less in case of AU. Better results are observed from the AU route.
- D. Khomskii , Physics, 2 (2009) 20.
- N. A. Hill, J. Phys. Chem. B, 104 (2000) 6694.
- W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 442 (2006) 759.
- M. Kumar, S. Shankar, R. K. Kotnala and Om Parkash, Journal of Alloys and Compounds, 577 (2013) 222.
- J. R. Teague, R. Gerson and W. J. James, Sol. Stat. Commun., 8 (1970) 1073.
- P. Fischer and M. Polomska , J. Phys. C: Sol. Stat., 13 (1980) 1931.
- W. Prellier, M. P. Singh, and P. Murugavel, J. Phys.: Condens. Matter, 17 (2005) R803.
- I. Sosnowska, T.P. Neumaier and E. Steichele, J. Phys. C., 15 (1982) 4835.
- R. Ramesh and N. A. Spaldin, Nature Mater., 6 (2007) 21.
- S. W. Cheong and M. Mostovoy, Nature Mater., 6 (2007) 13.
- A. Singh, V. Pandey, R. K. Kotnala, and D. Pandey, Phys. Rev. Lett., 101 (2008) 247602.
- Yu F. Popov, A. M. Kadomtseva, G. P. Vorob’ev, and A. K. Zvezdin, Ferroelectrics, 162 (1994) 135.
- A. M. Kadomtseva, A. K. Zvezdin, Y. F. Popov, A. P. Pyatakov, and G. P. Vorob’ev, JETP Lett., 79 (2004) 571.
- B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, Phys. Rev. B, 69 (2004) 064114.
- T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett., 7 (2007) 766.
- I. R. Teague, R. Gerson, and W. J. James, Solid State Commun., 8 (1970) 1073.
- Tae-Jin Park, Georgia C. Papaefthymiou, Arthur J. Viescas, Yongjae Lee, Hongju Zhou, and Stanislaus S. Wong, Phys. Rev. B, 82 (2010) 024431.
- T. H. Wang, Y. Ding, C. S. Tu, Y. D. Yao, K. T. Wu, T. C. Lin, H. H. Yu, C. S. Ku, and H. Y. Lee., J. Appl. Phys., 109 (2011) 07D907.
- Y.H. Chu, Q. Zhan, L.W. Martin, M.P. Cruz, P. Yang, G.W. Pabst, F. Zavaliche, S. Yang, J. Zhang, L. Chen, D.G. Schlom, I. Lin, T. Wu, R. Ramesh, Adv. Mater., 18 (2006) 2307.
- S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, N.B. Ming, Appl. Phys. Lett., 87 (2005) 262907.
- I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C., 15 (1982) 4835.
- I. Sosnowska, M. Loewenhaupt, W.I.F. David, R. Ibberson, Physica B, 180 (1992) 117.
- E.Y. Roginskaya, Y.Y. Tomashpol’skii, Y.N. Venevtsev, V.M. Petrov, G.S. Zhdanov, Sov. Phys. JETP, 23 (1966) 47.
- S.V. Kiselev, R.P. Ozerov, G.S. Zhdanov, Sov. Phys. Dokl., 7 (1963) 742.
- Y.F. Popov, A. Zvezdin, G. Vorob’ev, A. Kadomtseva, V. Murashev, D. Rakov, JETP Lett., 57 (1993) 69.
- Y.F. Popov, A. Kadomteseva, S. Krotov, D. Belov, G. Vorob’ev, P. Makhov, A. Zvezdin, Low Temp. Phys., 27 (2001) 478.
- Zhi Yu, and Chen Ang, J. Appl. Phys., 91 (2002) 1487.
|