1. Ancuti, C. O., Ancuti, C., Hermans, C., & Bekaert, P. (2011). A Fast Semi-inverse Approach to Detect and Remove the Haze from a Single Image BT - Computer Vision – ACCV 2010: 10th Asian Conference on Computer Vision, Queenstown, New Zealand, November 8-12, 2010, Revised Selected Papers, Part II. In R. Kimmel, R. Klette, & A. Sugimoto (Eds.), (pp. 501–514). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-19309-5_39
2. C Ancuti, C. A. (2014). Effective contrast-based dehazing for robust image matching. IEEE Geoscience and Remote Sensing Letters, 11(11), 1871–1875.
3. Fattal, R., Raanan, Fattal, & Raanan. (2008). Single image dehazing. ACM Transactions on Graphics, 27(3), 1. http://doi.org/10.1145/1360612.1360671
4. Guo, F., Tang, J., & Cai, Z.-X. (2014). Image Dehazing Based on Haziness Analysis. International Journal of Automation and Computing, 11(1), 78–86. http://doi.org/10.1007/s11633-014-0768-7
5. He, K., Sun, J., & Tang, X. (2010). Guided Image Filtering BT - link.springer.com. Link.Springer.Com, 6311(Chapter 1), 1–14. http://doi.org/10.1109/TPAMI.2012.213
6. Israël, H., & Kasten, F. (1959). KOSCHMIEDERs Theorie der horizontalen Sichtweite BT - Die Sichtweite im Nebel und die Möglichkeiten ihrer künstlichen Beeinflussung. In H. Israël & F. Kasten (Eds.), (pp. 7–10). Wiesbaden: VS Verlag für Sozialwissenschaften. http://doi.org/10.1007/978-3-663-04661-5_2
7. K., H., J., S., & X., T. (2010). Single image haze removal using dark channel prior. Single image haze removal using dark channel prior. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(12), 2341–2353.
8. Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., … Lischinski, D. (2008). Deep photo. In ACM SIGGRAPH Asia 2008 papers on - SIGGRAPH Asia ’08 (Vol. 27, p. 1). New York, New York, USA: ACM Press. http://doi.org/10.1145/1457515.1409069
9. McCartney, E. J., & Hall, F. F. (1977). Optics of the Atmosphere: Scattering by Molecules and Particles. Physics Today, 30(5), 76–77. http://doi.org/10.1063/1.3037551
10. Meng, G., Wang, Y., Duan, J., Xiang, S., & Pan, C. (2013). Efficient Image Dehazing with Boundary Constraint and Contextual Regularization. In 2013 IEEE International Conference on Computer Vision (pp. 617–624). IEEE. http://doi.org/10.1109/ICCV.2013.82
11. Narasimhan, S. G., & Nayar, S. K. (2002). Vision and the Atmosphere. International Journal of Computer Vision, 48(3), 233–254. http://doi.org/10.1023/A:1016328200723
12. Narasimhan, S. G., & Nayar, S. K. (2003). Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6), 713–724. http://doi.org/10.1109/TPAMI.2003.1201821
13. Nishino, K., Kratz, L., & Lombardi, S. (2012). Bayesian Defogging. International Journal of Computer Vision, 98(3), 263–278. http://doi.org/10.1007/s11263-011-0508-1
14. Schechner, Y. Y., Narasimhan, S. G., & Nayar, S. K. (2001). Instant dehazing of images using polarization. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 1, I–325–I–332. http://doi.org/10.1109/CVPR.2001.990493
15. Tan, R. (2016). Visibility in Bad Weather.
16. Tarel, J.-P., & Hautiere, N. (2009). Fast visibility restoration from a single color or gray level image. Computer Vision 2009 IEEE 12th International Conference on, (Iccv), 2201–2208. http://doi.org/10.1109/ICCV.2009.5459251
17. Zhu, X., Li, Y., & Qiao, Y. (2015). Fast single image dehazing through Edge-Guided Interpolated Filter. In 2015 14th IAPR International Conference on Machine Vision Applications (MVA) (pp. 443–446). IEEE. http://doi.org/10.1109/MVA.2015.7153106